Муниципальное автономное общеобразовательное учреждение гимназия № 55 им. Е.Г. Вёрсткиной г. Томска

Согласовано	Утверждено	
Педагогический совет	«1» сентября 2024 г.	
Протокол № 1	приказ №/о	
от «» августа 2024 г.	Директор гимназии	
	Е.Ю. Черемных	

РАБОЧАЯ ПРОГРАММА ФАКУЛЬТАТИВНОГО КУРСА

«Ядерная физика» для среднего общего образования 10 класс

> Количество часов в неделю: 1ч Количество часов за год: 34ч Общее количество часов за период обучения:34

Пояснительная записка

Рабочая программа факультативного курса «Ядерная физика» составлена в соответствии со следующими документами:

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».
- 2.Приказ Минпросвещения России от 17.05.2012 № 413 «Об утверждении федерального государственного образовательного стандарта основного образования» (в ред. Приказов Минпросвещения России от 12.08.2022 N 732).
- 3. Приказ Минпросвещения России от 18.05.2023 № 371 «Об утверждении федеральной образовательной программы среднего общего образования.
- 4. Приказ Минпросвещения России от 27.12.2023 № 1028 «О внесении изменений в некоторые приказы Минобрнауки и Минпросвещения, касающиеся ФГОС основного общего образования и среднего общего образования».
- 5. Приказ Министерства просвещения Российской Федерации от 24.11.2022 № 1025 «Об утверждении федеральной адаптированной образовательной программы основного общего образования для обучающихся с ограниченными возможностями здоровья».
- 6. Приказ Минпросвещения России от 01.02.2024 № 67 «О внесении изменений в некоторые приказы Минпросвещения России, касающиеся федеральных адаптированных образовательных программ».
- 7. Приказ Минпросвещения России от 19.03.2024 № 171 «О внесении изменений в некоторые приказы Министерства просвещения РФ, касающиеся ФОП начального общего образования, основного общего образования, среднего общего образования».
- 8. Приказ Минпросвещения России от 01.02.2024 №62 «О внесении изменений в некоторые приказы Минпросвещения России, касающиеся федеральных образовательных программ основного общего образования и среднего общего образования».
- 9. Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (вместе с «СП 2.4.3648-20. Санитарные правила...»).
- 10. Приказ Минпросвещения России от 21.02.2024 №119 «О внесении изменений в приложения № 1 и № 2 к Приказу Минпросвещения России от 21.09.2022 № 858 Об утверждении ФПУ, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность и установления предельного срока использования исключенных учебников».
- 11. Приказ Минпросвещения Российской Федерации от 18.07.2024 №499 «Об утверждении федерального перечня электронных образовательных ресурсов, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
- 12. Приказ Минпросвещения России от 31.08.2023 №650 «Об утверждении Порядка осуществления мероприятий по профессиональной ориентации обучающихся по образовательным программам основного общего и среднего общего образования».
- 13. Федеральный закон от 19.12.2023 № 618-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации».
- 14. Приказ Минпросвещения России от 03.08.2023 № 581 «О внесении изменения в пункт 13 порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования, утвержденного приказом министерства просвещения российской федерации от 22 марта 2021 г. № 115».

- 15. Положение о рабочей программе МАОУ гимназии №55 им. Е.Г.Вёрсткиной г. Томска.
 - 16. Учебный план СОО МАОУ гимназии №55 им. Е.Г.Вёрсткиной г. Томска.
- 17. Календарный учебный график МАОУ гимназии №55 им. Е.Г.Вёрсткиной на 2024 -2025 учебный год.

Изучение курса «Ядерная физика» направлено на углубление и обобщение знаний школьников о современной картине мира, основанной на квантовой механике и специальной теории относительности. Именно эти разделы современной физики позволили понять суть структуры материи и использовать эти знания для создания ядерной энергетики, современной квантовой электроники, разработать эффективные методы диагностики и лечения различных заболеваний, сделать много других важных открытий.

Ядерная физика — наука экспериментальная. Методы и приборы для фундаментальных исследований в современной ядерной физике основаны на использовании высоких технологий и нестандартных инженерных решений.

Задачи физического образования состоят не только в выявлении и подготовке талантливых молодых людей для продолжения образования и дальнейшей профессиональной деятельности в области естественнонаучных исследований и создании новых технологий. Не менее важным является формирование естественнонаучной грамотности и интереса к науке у основной массы обучающихся, которые в дальнейшем будут заняты в самых разнообразных сферах деятельности.

Цель программы: расширение, углубление и обобщение знаний о физических процессах в области ядерной физики, причинах и механизмах их протекания, развитие познавательных интересов и творческих способностей учащихся через практическую направленность обучения физике и интегрирующую роль физики в системе естественных наук.

Задачи:

- развитие естественно-научного мировоззрения учащихся;
- развитие приёмов умственной деятельности, познавательных интересов, склонностей и способностей учащихся;
- развитие мотивации учения, формирование потребности в получении новых знаний и применении их на практике;
- расширение, углубление и обобщение знаний по физике, химии, биологии;
- использование межпредметных связей физики с математикой, биологией, химией, историей, экологией, рассмотрение значения этого курса для успешного освоения смежных дисциплин;
- совершенствование экспериментальных умений и навыков в соответствии с требованиями правил техники безопасности;
- рассмотрение связи ядерной физики с жизнью, с важнейшими сферами деятельности человека;
- развитие у учащихся умения самостоятельно работать с дополнительной литературой и другими средствами информации;
- формирование у учащихся умений анализировать, сопоставлять, применять теоретические знания на практике;
- формирование умений по решению экспериментальных и теоретических задач.

Основные идеи курса:

- единство материального мира;
- внутри- и межпредметная интеграция;
- взаимосвязь науки и практики;
- взаимосвязь человека и окружающей среды.

Планируемые результаты освоения курса

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты. Учащийся научится:

- раскрывать на примерах роль ядерной физики в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между физикой и другими естественными науками;
- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологии, в практической деятельности людей;
- характеризовать взаимосвязь между физикой и другими естественными науками;
- понимать и объяснять целостность физической теории, различать границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчётные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной в задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки. Учащийся получит возможность научиться:
- описывать и анализировать полученную в результате проведённых физических экспериментов информацию, определять её достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебноисследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы, для обработки результатов эксперимент

Содержание курса

Введение в ядерную физику (6 часов)

Излучение абсолютно чёрного тела и квантовая гипотеза Планка, открытие Дж. Томсоном электрона. Открытие рентгеновского излучения. Открытие А. А. Беккерелем радиоактивности. Опыты Пьера и Марии Кюри. Создание А. Эйнштейном специальной

теории относительности. Взаимосвязь между массой и энергией. Эксперимент Э. Резерфорда по открытию «планетарной» модели атомного ядра. Квантование энергии и модель Н. Бора. Последствия этих открытий для создания квантовой механики и ядерной физики как основы технического прогресса человечества в XX и XXI вв., создания картины микро- и макрокосмоса на основе Стандартной модели. Основные свойства атомных ядер: состав, размер, форма, заряд, масса ядра, энергия связи. Изотопы. Модель атома Бора и линейчатые спектры. Классическая протон-нейтронная модель ядра. Ядерные модели: ферми-газ, капельная, оболочечная и обобщённая модель ядра.

Основные постулаты специальной теории относительности. Преобразования Галилея и Лоренца. Инвариантность интервала.

Радиоактивность. Радиоактивные превращения (8 часов)

Ядерные силы. Радиоактивность. Виды радиоактивности: а-, b-, g-распад, спонтанное деление. Границы стабильности атомных ядер. Закон радиоактивного распада. Период полураспада. Активность радиоактивного источника. Ядерные превращения в экспериментах Резерфорда. Открытие протона и нейтрона. Реакции деления ядер. Цепная ядерная реакция. Термоядерные реакции. Подпороговые реакции. Рождение антипротонов. Изучение структуры протонов и ядер в пучках электронов.

Ядерная физика и жизнедеятельность человека. (8 часов)

Ядерная энергетика и глобальные проблемы человечества. Ядерные реакторы. Природные ядерные реакторы. Ядерная физика и медицина. Модель ускорительного комплекса для протонной радиотерапии. Ядерные исследования с нейтронами. Свойства нейтронных пучков. Модель исследовательского импульсного реактора на быстрых нейтронах ИБР-2. Применение нейтронного активационного анализа в экологии. Ядерная планетология. Поиск воды на Марсе при помощи источника нейтронов. Что изучает радиобиология. Состав космического излучения и его воздействие на живые организмы. Пилотируемые полёты в космос и радиационные риски. Астробиология.

Виртуальный лабораторный практикум (10 часов)

Принципы работы линейных и циклических ускорителей. Движение заряженных частиц в электрическом и магнитном поле. В. И. Векслер: принцип автофазировки. А. М. Будкер: идея электронного охлаждения и первые встречные кольца. Большой адронный коллайдер (LHC) в Европе и коллайдер релятивистских ядер (RHIC). Модель ускорительного комплекса НИКА — российского коллайдера тяжёлых ионов.

Различные типы детекторов: газовый, фотоэмульсии, пузырьковая камера, сцинтилляционный, полупроводниковый, детектор на основе микроканальных пластин. Съём сигнала с детектора. Энергетические и время-пролётные спектры. Современные методы съёма и оцифровки информации.

Работа.№1. Основы измерений в ядерной физике. Основы работы с цифровым сигналом.

Работа №2. Измерение спектра альфа-частиц.

Работа №3. Измерение энергий осколков деления и расчет толщины подложки источника с калифорнием -252

Работа №4. Характеристическое рентгеновское излучение. Закон Мозли.

Итоги курса (4 часа)

Научно-практической конференция или круглый стол, на котором заслушиваются доклады учащихся по выбранной теме исследования, которые могут быть представлены в форме реферата или отчёта по исследовательской работе.

3) Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.

№	Наименование раздела	Количество часов
1.	Введение в ядерную физику	6

2.	Радиоактивность. Радиоактивные превращения	8
3.	Ядерная физика и жизнедеятельность человека.	8
4.	Виртуальный лабораторный практикум	8
5.	Итоги курса	4

Учебно-методическое обеспечение курса включает учебное пособие для учащихся, Интернет-ресурс «Виртуальная лаборатория ядерной физики», программу элективного курса и интернет-ресурс с онлайн-версией курса и системой управления учебным процессом на основе системы MOODLE.

Виды деятельности.

На занятиях по данному курсу учащиеся углубляют свои знания о ядерной физике, современной картине мира, приборах и методах фундаментальных и прикладных исследований в области ядерной физики. В результате изучения курса расширяется мировоззрение учащихся, развивается их познавательный интерес, интеллектуальные и творческие способности, формируются предметные, общеучебные и специфические умения и навыки школьников.

Курс насыщен экспериментальным материалом: демонстрационным экспериментом, практическими работами на базе виртуальной интернет лаборатории.

Использование в учебном процессе практических работ способствует мотивации для обобщения учебного материала, расширяет возможности индивидуального и дифференцированного подходов к обучению, повышает творческую активность учащихся, расширяет их кругозор. Данные практические работы связаны с определением не только качественных, но и количественных характеристик. Систематическое выполнение количественных экспериментальных задач развивает у учащихся аккуратность, способствует выработке навыков точной количественной оценки результатов эксперимента.

Каждая практическая работа включает краткие теоретические сведения и экспериментальную часть.

В качестве основной организационной формы проведения занятий предлагаются лекционно-семинарское занятия, на которых даётся объяснение теоретического материала и решаются задачи по данной теме. Для повышения интереса к теоретическим вопросам и закрепления изученного материала предусмотрены демонстрационные опыты и лабораторный практикум.

Формами контроля за усвоением материала могут служить отчёты по практическим работам, самостоятельные творческие работы, тесты, итоговые учебно-исследовательские проекты. Итоговое занятие проходит в виде научно-практической конференции или круглого стола, на котором заслушиваются доклады учащихся по выбранной теме исследования, которые могут быть представлены в форме реферата или отчёта по исследовательской работе.

Примерные темы для индивидуальных проектов в рамках курса «Ядерная физика».

- Детектирование излучений, виды детекторов и принципы их работы.
- От атомной гипотезы Демокрита до периодической системы Менделеева.
- Движение частиц в электрическом и магнитном полях. Физические принципы работы ускорителей.
- Физические эксперименты в ядерной физике, изменившие картину мира.
- Радиоуглеродное датирование и его применение в геологии и археологии.
- Применение ядерных технологий в науках о жизни.
- Современное представление о строении вещества. Стандартная модель.
- Физические принципы работы термоядерных энергетических установок.
- Ядерные силы и сильные взаимодействия.

Список литературы

- Окунь Л. Б. Элементарное введение в физику элементарных частиц / J1. Б. Окунь. М.: Наука, 1985.
- Эйнштейн А. Эволюция физики / А. Эйнштейн, Л. Инфельд. М.: Наука, 1965.
- Воронцова Н.И., Делов М.И., Клыгина К.В. Ядерная физика.10-11 классы: учеб. пособие для общеобразоват. организаций. М: Просвещение, 2021.- 159с.
- Панебратцев Ю.А. примерная рабочая программа элективного курса «Ядерная физика»
- Гольдфарб Н.И. Физика 10-11 классы. Задачник.
- Парфентьева Н.А. Сборник задач по физике. 10-11 классы: учеб. пособие для общеобразоват. организаций. М: Просвещение, 2020. 208с.